Additional information for poster “Distinct structural features of the iRhom homology domain (IRHD) regulate ADAM17 interaction and forward trafficking.”

3rd International Symposium

Protease World in Health and Disease


Supplementary material


Figure S1

(A) Structural model of the IRHD and the rhomboid core of iRhom2 created with AlphaFold 2.

(B) Multiple sequence alignment of iRhoms reveal a highly conserved motif (iCERES) in a region without secondary structures as well as a hypervariable loop.


Figure S2

Comparison of experimentally derived substructures with AlphaFold 2 and AlphaFold Multimer The low root-mean-square deviation (RMSD) from the correct atomic positions demonstrates high accuracy of prediction.


Figure S3

(A) To avoid disturbing the folding of the rhomboid core, we bridged the gap between TMH1 and TMH2 with a long linker.

(B) Local structure of iCERES. W538, W545 and I542 form a hydrophobic core.

(C) Other mutations in iCERES show that disruption of the hydrophobic core has the most drastic effects. Mutation of other positions in iCERES also reduces the efficiency of iCERES function (forward traffic), but not as drastically as mutation of the hydrophobic core.


Literature


1. Düsterhöft, S., S. Kahveci-Turkoz, J. Wozniak, et al., Cell Mol Life Sci, 2021 DOI: 10.1007/s00018-021-03845-3.

2. Li, X., T. Maretzky, J.M. Perez-Aguilar, et al., J Cell Sci, 2017. 130(5): p. 868-878 DOI: 10.1242/jcs.196436.

3. Cavadas, M., I. Oikonomidi, C.J. Gaspar, et al., Cell Rep, 2017. 21(3): p. 745-757 DOI: 10.1016/j.celrep.2017.09.074.

4. Düsterhöft, S., K. Hobel, M. Oldefest, et al., J Biol Chem, 2014. 289(23): p. 16336-48 DOI: 10.1074/jbc.M114.557322.

5. Düsterhöft, S., M. Michalek, F. Kordowski, et al., Biochemistry, 2015. 54(38): p. 5791-801 DOI: 10.1021/acs.biochem.5b00497.

6. Seegar, T.C.M., L.B. Killingsworth, N. Saha, et al., Cell, 2017. 171(7): p. 1638-1648 e7 DOI: 10.1016/j.cell.2017.11.014.

7. Janes, P.W., N. Saha, W.A. Barton, et al., Cell, 2005. 123(2): p. 291-304 DOI: 10.1016/j.cell.2005.08.014.

8. Takeda, S., T. Igarashi, H. Mori, et al., EMBO J, 2006. 25(11): p. 2388-96 DOI: 10.1038/sj.emboj.7601131.

9. Grötzinger, J., I. Lorenzen and S. Düsterhöft, Biochim Biophys Acta Mol Cell Res, 2017. 1864(11 Pt B): p. 2088-2095 DOI: 10.1016/j.bbamcr.2017.05.024.

10. Sommer, A., F. Kordowski, J. Buch, et al., Nat Commun, 2016. 7: p. 11523 DOI: 10.1038/ncomms11523.

11. Düsterhöft, S., A.K. Bartels, T. Koudelka, et al., Biochem Biophys Res Commun, 2020. 526(2): p. 355-360 DOI: 10.1016/j.bbrc.2020.03.093.

12. Le Gall, S.M., T. Maretzky, P.D.A. Issuree, et al., J Cell Sci, 2010. 123(22): p. 3913-3922 DOI: 10.1242/jcs.069997.

13. Doedens, J.R., R.M. Mahimkar and R.A. Black, Biochemical and Biophysical Research Communications, 2003. 308(2): p. 331-338 DOI: 10.1016/s0006-291x(03)01381-0.

14. Le Gall, S.M., P. Bobe, K. Reiss, et al., Mol Biol Cell, 2009. 20(6): p. 1785-94 DOI: 10.1091/mbc.E08-11-1135.

15. Sommer, A., S. Bhakdi and K. Reiss, Cell Cycle, 2016. 15(22): p. 2995-2996 DOI: 10.1080/15384101.2016.1211449.

16. Grieve, A., H. Xu, U. Künzel, et al., Elife, 2017. 6 DOI: 10.7554/eLife.23968.

17. Berman, H.M., J. Westbrook, Z. Feng, et al., Nucleic Acids Res, 2000. 28(1): p. 235-42 DOI: 10.1093/nar/28.1.235.

18. Varadi, M., S. Anyango, M. Deshpande, et al., Nucleic Acids Res, 2022. 50(D1): p. D439-D444 DOI: 10.1093/nar/gkab1061.

19. van Kempen, M., S.S. Kim, C. Tumescheit, et al., bioRxiv, 2022: p. 2022.02.07.479398 DOI: 10.1101/2022.02.07.479398.

20. Holm, L., Nucleic Acids Res, 2022 DOI: 10.1093/nar/gkac387.


Cooperations


Dr. Nicole Schwarz - MOCA, RWTH UK Aachen

Dr. Christian Preisinger - IZKF Aachen

Dr. Petr Kasparek and Dr. Radislav Sedlacek - ASCR Prague